Left Nb. | Right Nb. | Frequency |
---|---|---|
eta | ez | 699 |
da | eta | 918 |
ez | dira | 575 |
ez | du | 909 |
ez | da | 1826 |
ere | izan | 79 |
ere | ez | 327 |
dira | eta | 501 |
bat | edo | 122 |
bat | izan | 160 |
bat | ere | 216 |
bat | da | 357 |
izan | ez | 82 |
izan | du | 257 |
izan | ere | 331 |
izan | dira | 371 |
izan | behar | 468 |
izan | da | 869 |
edo | ez | 88 |
behar | izan | 193 |
behar | du | 407 |
behar | dira | 490 |
behar | da | 1036 |
NN co-occurrences within the 10 most frequent words are presented in a table.
The graph below gives much more information. Here, the top-1000 words are plotted against each other and the dots indicate NN co-occurrences. The diameter of the dots increases with the significance of the co-occurrence. Both axis are scaled logarithmic to shift the emphasis to the top words.
The picture above is very typical for a language, therefore the name language fingerprint. Comparing these fingerprints for different languages one is able to identify determiners, prepositions etc. by its graphical properties.
Frequency of the most frequent word:
select @maxfreq:=(select freq from words where w_id=101);
Table data:
select w1.word,w2.word,c.freq from co_n c, words w1, words w2 where w1.w_id=w1_id and w2.w_id=w2_id and w1_id>100 and w2_id>100 and 110>=w1_id and 110>=w2_id and c.freq>(select count(*) from sentences)/100000 order by w1.w_id;
Picture data:
select if(12>w1_id-99,w1.word,"-"),if(12>w2_id-99,w2.word,"-"),w1_id-99,w2_id-99,1/(log(c.freq/@maxfreq)*log(c.freq/@maxfreq)/20) from co_n c, words w1, words w2 where w1.w_id=w1_id and w2.w_id=w2_id and w1_id>100 and w2_id>100 and 1100>=w1_id and 1100>=w2_id and c.freq>(select count(*) from sentences)/100000;